スギ、ヒノキの力学的性質におよぼすもめの影響について

1. 緒言
台風19号のような強大な風圧力を受け返し受けつづけた林分では、樹幹が曲げ荷重を受けるため、樹幹の折損、斷落、倒伏などの被害が見られる。このような被害木の樹幹には、目視的にも微視的でも、もめが広範囲にわたって観察される。また、一見正常に見える残存木も、同様の風圧力を受けているため、材質には上に述べた欠点を生じているものもある。従って、このような欠点を持つ木材を利用するとき、欠点が木材の力学的性質におよぼす影響を把握することが重要である。

以上のような背景を踏まえて、木材の力学的性質におよぼすもめの影響を明らかにすることを目的に、台風19号の被害を受けたスギ、ヒノキを対象にして、もめ発生側とかもめが認められない反対側で、縦圧縮試験と曲げ試験を行い、比較、検討を行った。

2. 実験
(1) 試験木の概要
試験木は台風被害を受けたスギ、ヒノキ林分において、断層もめが認められた残存立木である。なお、ヒノキは大分県蒲原町の九州林業試験場有林五馬山林（54年生）から、スギ（実生）は福岡県嘉穂町の氏有林（35年生）から伐倒された。
(2) もめの観察
試験木の木部最外層において、もめの接続方向の長さと木部最外層からの内部への放射方向の深さを測定した。また、肉眼的にもめが認められない部位から顕微鏡観察用の試料を切り出し、走査型電子顕微鏡を用いて損傷の有無を観察した。
(3) 曲げ試験
一般に、もめは樹幹の片側に集中して発生しているため、樹幹をもめ発生側（もめ側）と反対側に分けた。それぞれの木部外周部位から次の3種類のヒノキの曲げ試験片（放射方向に幅2.3cm、接線方向に厚さ1.4cm、軸方向に長さ28cm）をつくり、生材状態で中央集中荷重による曲げ試験を行った。
A: 反対側の無欠点試験片
B: 曲げ試験片の中央部（荷重点）に、もめが存在する試験片
C: 曲げ試験片の任意の位置に、もめが存在する試験片
(4) 縦圧縮試験
曲げ試験と同様に、樹幹をもめ側と反対側に分け、それぞれの木部外層部位から次の3種類の縦圧縮試験片（ヒノキ：断面2.3cm × 1.4cm、長さ6cm、スギ：断面2cm × 2cm、長さ6cm）をつかった。そして、曲げ試験と同様に生材状態で縦圧縮試験を行った。
A: 反対側の無欠点試験片
B: 肉眼的に確認できるもめを持つ試験片
C: 肉眼で肉眼的にもめが認められない部位から得た試験片
3. 結果と考察
(1) 樹幹内のもめの発生状況
図1にヒノキ、図2にスギの樹幹木部最外層部に占めるもめ発生割合の割合、および木部最外層部からのもめの深さの一例を、樹幹方向の図示して示している。2つの図より、もめは径の約2/3の位置まで分布し、発生の程度は径の1/4～1/3半径の範囲を示した。また、もめ側で肉眼的にもめが認められない部位ともめ側の反対側で顕微鏡観察を行った結果、もめ側では骨格覗きに、"しわ"が観察された（図3）。他方、反対側では異常な損傷を見いだせなかった。すなわち、もめ側では肉眼的に認められるもめに加えて、顕微鏡レベルの損傷（"しわ"）が広範囲にわたって存在することが確認された。
(2) 曲げ曲げ率と曲げ強さ
表1には試験片のタイプ別にヒノキの曲げ曲げ試験結果が示されている。表1より、反対側Aの値に対するもめ側B、Cの平均値の低下は、曲げ曲げ率で58%と35%
%、曲げ強さで28％と8%を示した。すなわち、もめ
の存在は曲げ強さよりも曲げ強さに著しい影響を
与えることが認められた。また、曲げ強さと曲げ
強さの両方で、反対側Aよりも側B、Cで変動率が
大きいが、これはもめ側Bでのもめの程度、もめ側Cで
はもめの程度に加えてもめの位置が関与していること
を示している。さらに、もめ側Cよりも側Bで平均
値が小さいことから、荷重点付近のもめの存在が曲げ
強さや曲げ強さに著しく影響することが認められ
た。
(3) 縮短圧縮強さと延性圧縮強さ
表2にヒノキ、表3にはスギの縮短圧縮試験結果を
試験片のタイプ別に示している。比重を1としたときの圧縮
強さ（圧縮強さ）と圧縮強さ（延性圧縮強さ）を
反対側ともめ側で比較すると、ヒノキでは反対側Aの
値に対するもめ側B、Cの平均値の低下は、圧縮強さ
で55%と10%、圧縮強さで15%と6%を示した。一方、
スギでは圧縮強さで36%と21%、圧縮強さで9%と14%を示した。
以上の結果から、曲げ試験の結果と同様に、もめは
強さよりも圧縮強さに大きく影響することが認められ
た。さらに、もめ側で肉眼的にもめが認められないCの
試験片、すなわち線状的に「しわ」が認められた試
験片でも反対側に比べて圧縮強さは低下しており、肉
眼的に認められるもめに加えて顕微鏡レベルでの「し
わ」も木材の力学的性質に大きく関与することが認め
られた。

4. 結論
台風19号の被害を受けたスギ、ヒノキの既存立木を
対象に、もめの観察および曲げ試験と圧縮試験を行
た結果、次の成果を得た。
1）多くの場合、肉眼的に認められるもめは樹幹の
断面に集中して発生し、樹高の約2/3の高さまで分布
していた。また、もめの程度は樹高の約1/4～1/3で著
かなかった。さらに、もめ側では肉眼的にもめが認められ
ない部位でも顕微鏡レベルで仮通気壁に「しわ」が存在
することが確認された。
2）もめおよび顕微鏡レベルでの「しわ」の存在は
曲げ強さや圧縮強さを著しく低下させるこ
とが実験的に明らかになった。他方、圧縮強さへのも
めの影響は顕著ではないが、曲げ強さへの影響は大き
いことが認められた。また、もめを含む材に曲げ荷重
が加わると、もめの程度に加えてもめの位置が著し
い影響を与えることを認めた。
謝辞
この研究を遂行する上で、試験木の調査を進めるに際
して九州林業株式会社に深く感謝の意を表する。