亜熱帯島嶼における荒廃林地の森林機能促進に関する研究（Ⅲ）

ー施肥と肥料木の効果についてー

1. はじめに

通常の方法では成林が期待できない荒廃林地において、森林育成技術の改善に供する目的で、施肥と肥料木の植栽を組み合わせたリュウキュウマツの人工下種による試験を実施した。試験区の特性が著しく異なることから、現況を調査し結果を報告する。

2. 試験方法

試験地は沖縄県南部に位置する名護市那覇市有林に昭和53年に設定した。過去にリュウキュウマツの人工下種を実施したが成林せず、ススキ、チガヤ等が生育し、一部が高木が露出する荒れ果て地である。名護市が特殊林改良事業を実施するために地元の準備作業を行った林地の一部を区画した。

試験区は10×10mの方形とし、それぞれ3mの間隔をとる東方向に走る平坦尾根を縦線で分けるように、5ブロック2列の形で配置した。各ブロックの処理の有無、植え穴の工法、肥料木植栽の有無及び植栽樹種により、表-1に示すような施業を行った。植栽後2年間は年2回、その後3年間は年1回の下見を実施し、以後今日まで除草等の施業は一切行っていない。肥料木はこの地域での特殊林改良事業における方法に従い、リュウキュウマツの人工下種の慣れ穴にマツ種子を30cmほど離して苗木を植え付けた。

調査は、平成4年7月に、造林木は定立木、その他については胸高直径8cm以上の立木に対象に実施した。育成の主目的の樹種であるリュウキュウマツについて、樹高成長量の分散分析、有意差検定を試みたが、これには各ブロックとも主林木のうち、樹高の高い順に10本（ブロック9のみは8本）づつを供試木とした。

3. 結果及び考察

試験地はどのブロックも植栽木以外では上層をシバニッケイが優占し、コシギ、ススキ、リュウキュウチクが中下層を成して繁茂している。

リュウキュウマツの育成状況は、各ブロック16〜22植え穴に21〜33本、当初の植え穴数の1/2〜2/3に成立しているにすぎない。ヤマモモが最も多いブロック9では8植え穴に10本成立しているだけである。縦体的に生存率が低く、風による被害が認められ、貧弱な樹形のものが多い。

リュウキュウマツの各ブロックの平均樹高は3.8〜6.0m、供試主要木平均樹高で4.4〜6.8mで、ブロック毎の成長差が大きい。また、この地域の生育されるリュウキュウマツの成長予想表の2/3の主幹枝平均樹高、即ち15年生の天然木で7.6m、人工林8.4mに比べてかなり低く、立地条件の劣悪さを表している。

根株による窒素の固定が本当の土壌条件の改良に貢献することを期待して、肥料木としてソウシジュとヤマモモを植栽した。ソウシジュは試験地全体で優らかに1本が生存しているだけで、このような立地環境での植栽には不適と言えようである。ヤマモモは生育本数が若干少ないものの良い成長をしている。

リュウキュウマツの樹高成長量について、主林木の平均樹高を基礎に、分散分析を行ったところ、表-2に示すようにブロック間で明かな差異のあることが確かめられたので、各ブロック毎の有意差検定を試みた。結果は表-3に示す通りである。

施肥の有無による施業の効果、即ち施肥地と無施肥地の樹高差は、ヤマモモとソウシジュの混植ブロック以外は、通常の植穴、深植した場合、ソウシジュやヤマモモの単株など、どのブロックも有意な差がある。施肥地の平均樹高は5.4m、無施肥地は4.3mで、施肥区の成長が明らかに良好である。なお、平均胸高直径は施肥

Isao ASATO, Eiji HIRATA（Fac. of Agric., Univ. of the Ryukyus, Nishihara, Okinawa 903 – 01）
Hitoshi IKUZAWA and Ryuichi TERAOKO（Okinawa Pref. Forest Exp., Sin., Nago, Okinawa 905）
Studies on the improvement of denuded forest land in the subtropical islands (Ⅲ) Effect of fertilizing and soil-improving-tree planting

37
肥区の6.1cmに対して、無施肥区は4.0cmであった。施肥を行わない場合の施肥効果について、普通植栽・無施肥のブロック5を基準に比較してみると、植え穴の深掘りやソウシジュ植栽の効果は認められなかったが、ヤマモモ植栽の効果は大きい。施肥を行った場合について、普通植栽・施肥のブロック2を基準に比較してみると、植え穴の深掘りやソウシジュ植栽はリュウキュウマツの成長には不都合な結果となっているが、ヤマモモの植栽は有効である。
肥料木については、無施肥区においては、樹種別の効果は判然としないが、施肥区においてはヤマモモ植栽の効果は明白で、良好である。

表－1 試験地の概況

<table>
<thead>
<tr>
<th>Plot</th>
<th>植え穴数</th>
<th>施肥</th>
<th>肥料木</th>
<th>全立木</th>
<th>リュウキュウマツ</th>
<th>ヤマモモ</th>
<th>主要混交樹種</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>本数</td>
<td>平均DBH</td>
<td>平均TH</td>
<td>本数</td>
</tr>
<tr>
<td>1</td>
<td>植36</td>
<td>無</td>
<td>ツガ</td>
<td>58</td>
<td>6.3</td>
<td>5.0</td>
<td>20</td>
</tr>
<tr>
<td>2</td>
<td>植30</td>
<td>施</td>
<td>ツガ</td>
<td>51</td>
<td>6.2</td>
<td>4.9</td>
<td>32</td>
</tr>
<tr>
<td>3</td>
<td>特35</td>
<td>無</td>
<td>ツガ</td>
<td>56</td>
<td>4.2</td>
<td>3.6</td>
<td>24</td>
</tr>
<tr>
<td>4</td>
<td>特33</td>
<td>施</td>
<td>ツガ</td>
<td>47</td>
<td>5.3</td>
<td>4.2</td>
<td>24</td>
</tr>
<tr>
<td>5</td>
<td>植34</td>
<td>無</td>
<td>ツガ</td>
<td>43</td>
<td>4.4</td>
<td>3.7</td>
<td>22</td>
</tr>
<tr>
<td>6</td>
<td>植32</td>
<td>施</td>
<td>ツガ</td>
<td>53</td>
<td>5.2</td>
<td>4.9</td>
<td>22</td>
</tr>
<tr>
<td>7</td>
<td>植34</td>
<td>無</td>
<td>ツガ</td>
<td>50</td>
<td>4.2</td>
<td>3.7</td>
<td>26</td>
</tr>
<tr>
<td>8</td>
<td>植36</td>
<td>施</td>
<td>ツガ</td>
<td>66</td>
<td>6.5</td>
<td>5.1</td>
<td>33</td>
</tr>
<tr>
<td>9</td>
<td>植31</td>
<td>無</td>
<td>ツガ</td>
<td>44</td>
<td>5.7</td>
<td>4.3</td>
<td>10</td>
</tr>
<tr>
<td>10</td>
<td>植35</td>
<td>施</td>
<td>ツガ</td>
<td>49</td>
<td>6.7</td>
<td>5.2</td>
<td>21</td>
</tr>
</tbody>
</table>

注) 植え穴（植：普通植栽、特：深掘）肥料木（ツガ、ツガ、ツガ）混交樹種のデータ数は本数

表－2 分散分析表

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>DF</th>
<th>MS</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plot</td>
<td>58.9</td>
<td>9</td>
<td>6.544</td>
<td>21.247**</td>
</tr>
<tr>
<td>Error</td>
<td>27.1</td>
<td>88</td>
<td>0.308</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>86.0</td>
<td>97</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

表－3 リュウキュウマツ樹高成長量の有意差検定

平均差の差 Plot 1 2 3 4 5 6 7 8 9 10

注) 信頼区間

計算式

\[
|x_0 - x_1| = \sqrt{\frac{S^2}{n_1} + \frac{S^2}{n_2}}
\]

Plot 9との比較 **印 5％の危険率で有意（＝0.053）

Plot 9以外の与印 5％～（＝0.50）**印 1％（＝0.05）