マンゴロープ植種の育苗に関する研究

琉球大学農学部
中須賀常雄

沖縄国際マンゴロープ協会
岸本 司

亜門 大学
楊 盛昌

1. はじめに

マンゴロープ林とは、熱帯及び亜熱帯の海岸や洞口の一部の海水や淡水に共存する常緑低木または高木の一部とされ、構成種は90種にも及ぶといわれている。マンゴロープ林は陸域生態系と海域生態系との両方にわたる特異な生態系であり、エコトーンとして極めて重要な役目を果たしている。しかし、近年急速にその質及び量の両面で衰退している。

本研究では、マンゴロープ林の造林に必要な苗木養成の基礎的調査として、沖縄に分布するヒルギ科3植物種の初期生長に及ぼす日照と塩分濃度の影響について実験を行なった。

2. 材料及び方法

実験に供した樹種は、ヒルギ科のメヒルギ（Kandelia candel (L.) DRUCE）、オヒルギ（Bruguiera gymnorrhiza (L.) LAMK.）及びヤエヤマヒルギ（Rhizophora stylosa GRIFF.）の3種である。メヒルギは、1991年5月沖縄本島戸崎町専川のメヒルギ林で、オヒルギとヤエヤマヒルギは、1990年10月、西表島船浦で採集した胎生芽を使用した。1/5000aのウクレルペットにバーミキュレートと栄養土を2：1で混合した塩地を入れ、上記の各胎生芽を1ボットに3本植栽し、温室内で、ホクグランド液を10～15日に施し、1992年11月の実験開始まで管理した。

図-1 日陰試験の光量子日変化
○ 户外（100%） ● A区（70%） ○ B区（35%） ● C区（10%）

図-2 各処理区の主軸伸長（1991年）
図-3 各処理区の主軸伸長（1992年）
図-4 各処理区の主軸伸長（1993年）

Tsuneo NAKASUGA (Col. of Agric., Univ. of the Ryukus, Okinawa 903-01), Tsukasa KISHIMOTO (Okinawa Inter. Assoc. for Mang. 903-1) and Sheng-Chang YANG (Xiamen Univ. Fujian China 361009)
Studies on cultivation of seedlings of mangrove species in Okinawa
３．結果及び考察

１）環境要因

日陰処理区の日陰度を決定するため晴天日（1992年5月13日）の測定例を図-1に示した。この測定結果より、日陰度はA区：70％、B区：35％、C区：10％とした。各処理区の年間平均気温（℃）は、A区：26.4±5.7 、B区：26.2±5.8 、C区：25.5±5.5で処理区間に有意差は見られない。なお、最低気温は各区とも2月の13℃、最高気温は各区とも8月にはみられ、A、C区で38℃、B区で39℃であった。湿度は年平均でA区で70.4±8.3％、B区で71.5±7.5％、C区で76.6±6.3％で、C区のみ1％レベルで有意であった。

２）苗木の生長

a) 主軸伸長

各樹種の主軸伸長経過を図2-4に示した。メヒルギでは、いずれの日陰区も2%塩分区が0%区より大きく、塩分区では日陰度が増すと伸長が大きとなっているが、0%区ではその逆の結果を示している。オヒルギでは、メヒルギと同様にいずれの日陰区でも塩分2%区が0%区より大きく、塩分区ではメヒルギと同様に日陰度が増すにつれて伸長長も大きとなっているが、塩分0%区では日陰区間に差はみられない。ヤエヤマハリギでは、上記2種と同様に塩分2%区が0%区よりいずれの日陰区でも伸長長が大であるが、日陰処理区間の差は明確でないが、塩分0%区では日陰度が増すにつれて伸長長は減少している。

b) 葉の性質

表-1に各処理区別別の葉の比葉面積（SLA）、葉寿命（LS）及び葉綠素価値の測定結果を示した。メヒルギでは、日陰により葉面積が強まる傾向が見られたが、塩分はそれを打ち消す作用が見られた。オヒルギでは、日陰処理はメヒルギよりも弱く、10%区でのみ効果が見られ、塩分はメヒルギとは逆の作用が見られた。ヤエヤマハリギでは、メヒルギとはほぼ同様であったが、その効果はより弱い傾向が見られた。

c) 苗木の性質

表-2に苗木の性質を示す指標を示した。メヒルギでは、日陰70%区では塩分を加えると成長は大きく成長が見られなかった。オヒルギでは、日陰10%区で葉の性質がかなり良好であったが、塩分を加えると伸長が特に大であった。ヤエヤマハリギでは、日陰35%区では苗木の性質が良好であったが、日陰35%以上では塩分を加えると成長が大きく成長する傾向を示した。

<table>
<thead>
<tr>
<th>表-1-1 葉の性質（メヒルギ）</th>
</tr>
</thead>
<tbody>
<tr>
<td>処理区</td>
</tr>
<tr>
<td>A区</td>
</tr>
<tr>
<td>S2</td>
</tr>
<tr>
<td>B区</td>
</tr>
<tr>
<td>S4</td>
</tr>
<tr>
<td>C区</td>
</tr>
<tr>
<td>S6</td>
</tr>
</tbody>
</table>

SLA：比葉面積 L. S.：寿命 SPAD：葉緑素価値

<table>
<thead>
<tr>
<th>表-2-1 苗木の性質（メヒルギ）</th>
</tr>
</thead>
<tbody>
<tr>
<td>処理区</td>
</tr>
<tr>
<td>A区</td>
</tr>
<tr>
<td>S8</td>
</tr>
<tr>
<td>B区</td>
</tr>
<tr>
<td>S10</td>
</tr>
<tr>
<td>C区</td>
</tr>
<tr>
<td>S12</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>表-1-2 葉の性質（オヒルギ）</th>
</tr>
</thead>
<tbody>
<tr>
<td>処理区</td>
</tr>
<tr>
<td>A区</td>
</tr>
<tr>
<td>S14</td>
</tr>
<tr>
<td>B区</td>
</tr>
<tr>
<td>S16</td>
</tr>
<tr>
<td>C区</td>
</tr>
<tr>
<td>S18</td>
</tr>
<tr>
<td>S19</td>
</tr>
<tr>
<td>S20</td>
</tr>
<tr>
<td>S21</td>
</tr>
<tr>
<td>S22</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>表-2-2 苗木の性質（オヒルギ）</th>
</tr>
</thead>
<tbody>
<tr>
<td>処理区</td>
</tr>
<tr>
<td>A区</td>
</tr>
<tr>
<td>S24</td>
</tr>
<tr>
<td>B区</td>
</tr>
<tr>
<td>S26</td>
</tr>
<tr>
<td>C区</td>
</tr>
<tr>
<td>S28</td>
</tr>
<tr>
<td>S29</td>
</tr>
<tr>
<td>S30</td>
</tr>
<tr>
<td>S31</td>
</tr>
<tr>
<td>S32</td>
</tr>
<tr>
<td>S33</td>
</tr>
<tr>
<td>S34</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>表-1-3 葉の性質（ヤエヤマハリギ）</th>
</tr>
</thead>
<tbody>
<tr>
<td>処理区</td>
</tr>
<tr>
<td>A区</td>
</tr>
<tr>
<td>S36</td>
</tr>
<tr>
<td>B区</td>
</tr>
<tr>
<td>S38</td>
</tr>
<tr>
<td>C区</td>
</tr>
<tr>
<td>S40</td>
</tr>
<tr>
<td>S41</td>
</tr>
<tr>
<td>S42</td>
</tr>
<tr>
<td>S43</td>
</tr>
<tr>
<td>S44</td>
</tr>
<tr>
<td>S45</td>
</tr>
<tr>
<td>S46</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>表-2-3 苗木の性質（ヤエヤマハリギ）</th>
</tr>
</thead>
<tbody>
<tr>
<td>処理区</td>
</tr>
<tr>
<td>A区</td>
</tr>
<tr>
<td>S48</td>
</tr>
<tr>
<td>B区</td>
</tr>
<tr>
<td>S50</td>
</tr>
<tr>
<td>C区</td>
</tr>
<tr>
<td>S52</td>
</tr>
<tr>
<td>S53</td>
</tr>
<tr>
<td>S54</td>
</tr>
<tr>
<td>S55</td>
</tr>
<tr>
<td>S56</td>
</tr>
<tr>
<td>S57</td>
</tr>
<tr>
<td>S58</td>
</tr>
</tbody>
</table>